Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nat Med ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517624

RESUMO

A phytochemical investigation of Kaempferia champasakensis rhizomes led to the isolation of a new 3,4-seco-isopimarane diterpene, kaempferiol A (1), and three new isopimarane diterpenes, kaempferiols B-D (2-4), together with six known isopimarane diterpenes (5-10). The structures of 1-4 were elucidated by extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, and 1D and 2D NMR. The absolute configurations of 1, 3, and 4 were determined by ECD calculations, while that of 2 was established using the modified Mosher method. All isolated compounds were tested for cytotoxicity against three human cancer cell lines, lung cancer (A549), cervical cancer (HeLa), and breast cancer (MCF-7). Among them, 6 and 7 showed moderate cytotoxic activities against the three tested cell lines, with IC50 values ranging from 38.04 to 27.77 µM, respectively.

2.
J Antibiot (Tokyo) ; 77(1): 66-70, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903880

RESUMO

Cancer cells including colorectal cancer cells are resistant to anoikis, an anchorage-independent programmed death, which enables metastasis and subsequent survival in a new tumor microenvironment. In this study, we identified a new anoikis inducer, amoxetamide A (1) with a ß-lactone moiety, that was produced by combined-culture of Amycolatopsis sp. 26-4 and mycolic acid-containing bacteria (MACB) Tsukamurella pulmonis TP-B0596. The structure of 1 including the stereochemistry of C8 was determined by MS and NMR spectroscopy and modified Mosher's method, and the absolute configurations of C11 and C12 were suggested as 11R and 12S, respectively, by GIAO NMR calculations. Amoxetamide A (1) exhibited anoikis-inducing activity in human colorectal cancer HT-29 cells in anchorage-independent culture conditions.


Assuntos
Actinobacteria , Neoplasias Colorretais , Humanos , Amycolatopsis , Anoikis , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral
3.
J Am Chem Soc ; 145(32): 17863-17871, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37534495

RESUMO

The unique bioactivities of arsenic-containing secondary metabolites have been revealed recently, but studies on arsenic secondary metabolism in microorganisms have been extremely limited. Here, we focused on the organoarsenic metabolite with an unknown chemical structure, named bisenarsan, produced by well-studied model actinomycetes and elucidated its structure by combining feeding of the putative biosynthetic precursor (2-hydroxyethyl)arsonic acid to Streptomyces lividans 1326 and detailed NMR analyses. Bisenarsan is the first characterized actinomycete-derived arsenic secondary metabolite and may function as a prototoxin form of an antibacterial agent or be a detoxification product of inorganic arsenic species. We also verified the previously proposed genes responsible for bisenarsan biosynthesis, especially the (2-hydroxyethyl)arsonic acid moiety. Notably, we suggest that a C-As bond in bisenarsan is formed by the intramolecular rearrangement of a pentavalent arsenic species (arsenoenolpyruvate) by the cofactor-independent phosphoglycerate mutase homologue BsnN, that is entirely distinct from the conventional biological C-As bond formation through As-alkylation of trivalent arsenic species by S-adenosylmethionine-dependent enzymes. Our findings will speed up the development of arsenic natural product biosynthesis.


Assuntos
Actinobacteria , Arsênio , Arsênio/metabolismo , Metabolismo Secundário , Actinobacteria/metabolismo , Actinomyces/metabolismo , S-Adenosilmetionina/metabolismo
4.
Chem Commun (Camb) ; 59(62): 9473-9476, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37477345

RESUMO

We describe activity-based protein profiling for analyzing the adenylation domains of non-ribosomal peptide synthetases (ABPP-NRPS) in bacterial proteomes. Using a range of non-proteoinogenic amino acid sulfamoyladenosines, the competitive format of ABPP-NRPS provided substrate tolerance toward non-proteinogenic amino acids. When coupled with precursor-directed biosynthesis, a non-proteinogenic amino acid (O-allyl-L-serine) was successfully incorporated into gramicidin S.


Assuntos
Aminoácidos , Peptídeos , Bactérias/metabolismo , Gramicidina , Peptídeo Sintases/química , Especificidade por Substrato
5.
Bioorg Med Chem Lett ; 89: 129323, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37169227

RESUMO

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) with polar-functionalized fatty acyl groups are newly found lipopeptide-class natural products. We recently employed a combined approach of genome mining and stable isotope labeling and discovered solabiomycins as one of the polar-functionalized fatty-acylated RiPPs (PFARs) from Streptomyces lydicus NBRC13058. The solabiomycins contained a characteristic sulfoxide group in the labionin moiety referred to as the 'solabionin' structure for the RiPP moiety. A previous gene knockout experiment indicated that solS, which encodes a putative flavin adenine dinucleotide (FAD)-nicotinamide adenine dinucleotide (phosphate) (NAD(P))-binding protein, is involved in the sulfoxidation of an alkyl sulfide in the solabionin. In this study, we isolated deoxysolabiomycins A and B from ΔsolS mutant and fully determined the chemical structures using a series of NMR experiments. We also tested the bioactivity of deoxysolabiomycins against Gram-positive bacteria, including Mycolicibacterium smegmatis, and notably found that the sulfoxide is critical for the antibacterial activity. To characterize the catalytic activity of SolS, the recombinant protein was incubated with a putative substrate, deoxysolabiomycins, and the cofactors FAD and NADPH. In vitro reactions demonstrated that SolS catalyzes the sulfoxidation, converting deoxysolabiomycins to solabiomycins.


Assuntos
Flavina-Adenina Dinucleotídeo , Peptídeos , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Peptídeos/farmacologia , Catálise , Sulfóxidos
6.
mSphere ; 8(3): e0011423, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37039698

RESUMO

Contractile injection systems (CISs) are a large group of phage tail-like nanostructures conserved among bacteria. Despite their wide distribution, the biological significance of CISs in bacteria remains largely unclear except for a few unicellular bacteria. Here, we show that Streptomyces lividans-a model organism of filamentous Gram-positive bacteria with highly conserved CIS-related gene clusters-produces intracellular CIS-like nanostructures (Streptomyces phage tail-like particles [SLPs]) that affect phenotypes of this bacterium under hyperosmotic conditions. In contrast to typical CISs released from the cells, SLPs are localized in the cytoplasm of S. lividans. In addition, loss of SLPs leads to (i) delayed erection of aerial mycelia on hyperosmotic solid medium and (ii) decreased growth during the transition from exponential growth phase to stationary phase in hyperosmotic liquid medium. Localization of fluorescent protein-tagged SLPs showed partial correlation with cell wall synthesis-related proteins, including MreB, an actin-like cytoskeleton protein. Our pulldown assay and subsequent quantitative proteome analysis also suggest that 30S ribosomal proteins and cell wall-related proteins, including MreB, are coeluted with SLPs. Furthermore, an interaction assay using the recombinant proteins revealed a direct interaction between a sheath protein of SLP and ribosomal protein S16. Results of cross-linking experiments show indirect interactions between SLPs and translation elongation factors. These findings collectively suggest that SLPs are directly or indirectly associated with a protein interaction network within the cytoplasm of S. lividans and that SLP loss ultimately affects the susceptibility of the bacterium to certain stress conditions. IMPORTANCE Recent bioinformatic analyses have revealed that CIS-related gene clusters are highly conserved in Gram-positive actinomycetes, especially members of the genus Streptomyces known for their ability to produce therapeutic antibiotics. While typical CISs are released from the cells and can act as protein translocation systems that inject effector proteins into the target cells, our results indicate the unique intracellular localization of SLPs, CIS-related nanostructures produced by S. lividans. In addition, the direct and indirect interactions of SLPs with cytoplasmic proteins and SLP localization within specific regions of mycelia suggest that the biological significance of SLPs is related to intracellular processes. Further, SLP loss leads to increased susceptibility of S. lividans to osmotic stress, suggesting that production of these phage tail-like nanostructures ultimately affects the fitness of the bacterium under certain stress conditions. This work will provide new insight into the phage tail-like nanostructures highly conserved in Streptomyces species.


Assuntos
Bacteriófagos , Streptomyces , Streptomyces lividans/genética , Streptomyces lividans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Pressão Osmótica , Streptomyces/genética , Bacteriófagos/metabolismo
7.
Appl Environ Microbiol ; 89(3): e0182222, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36790176

RESUMO

Streptomyces spp. are well-known producers of bioactive secondary metabolites (SMs) that serve as pharmaceutical agents. In addition to their ability to produce SMs, Streptomyces spp. have evolved diverse membrane transport systems to protect cells against antibiotics produced by itself or other microorganisms. We previously screened mutants of Streptomyces coelicolor that show a phenotype of reduced undecylprodigiosin (RED) production in a combined-culture with Tsukamurella pulmonis. Here, we identified a point mutation, which reduced RED production, by performing genome resequencing and genetic complementation. We found that inactivation of the sco1718 gene encoding the TetR family transcriptional regulator (TFR) produced a deficient phenotype for several SMs in Streptomyces coelicolor A3(2). In the genome of S. coelicolor A3(2), two other sets of TFR and two-component ATP-binding cassette (ABC) transporter genes (sco4358-4360 and sco5384-5382) were found which had similar effects on the phenotype for both secondary metabolism and antibiotic resistance. An electrophoretic mobility shift assay and quantitative reverse transcription-PCR experiments demonstrated that TFRs repressed the expression of each adjacent two-component ABC transporter genes by binding to the operator sequence. Notably, the Δsco1718 mutant showed increased resistance to several antibiotics of other actinomycete origin. Our results imply the switching of cell metabolism to direct offense (antibiotic production) or defense (efflux pump activation) using costly and limited quantities of cell energy sources (e.g., ATP) in the soil ecosystem. IMPORTANCE The bacterial metabolic potential to synthesize diverse secondary metabolites in the environment has been revealed by recent (meta)genomics of both unculturable and culturable bacteria. These studies imply that bacteria are continuously exposed to harmful chemical compounds in the environment. Streptomyces spp. contain antibiotic efflux pumps and SM biosynthetic gene clusters. However, the mechanism by which soil bacteria, including Streptomyces, survive against toxic compounds in the environment remains unclear. Here, we identified three sets of TFR-ABC transporter genes in Streptomyces coelicolor A3(2). We found that each TFR controlled the expression of respective ABC transporter, and the expression of all ABC transporters negatively impacted SM production and increased antibiotic resistance. Notably, bioinformatic analysis indicated that these TFR-ABC transporter gene sets are highly conserved and widely distributed in the genome of Streptomyces species, indicating the importance of systematic regulation that directs antibiotic production and xenobiotic excretion.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/metabolismo , Metabolismo Secundário , Ecossistema , Fatores de Transcrição/metabolismo , Antibacterianos/farmacologia , Streptomyces/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
8.
J Am Chem Soc ; 144(44): 20332-20341, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282922

RESUMO

Bioengineering of ribosomally synthesized and post-translationally modified peptides (RiPPs) is an emerging approach to explore the diversity of pseudo-natural product structures for drug discovery purposes. However, despite the initial advances in this area, bioactivity reprogramming of multienzyme RiPP biosynthetic pathways remains a major challenge. Here, we report a platform for de novo discovery of functional thiopeptides based on reengineered biosynthesis of lactazole A, a RiPP natural product assembled by five biosynthetic enzymes. The platform combines in vitro biosynthesis of lactazole-like thiopeptides and mRNA display to prepare and screen large (≥1012) combinatorial libraries of pseudo-natural products. We demonstrate the utility of the developed protocols in an affinity selection against Traf2- and NCK-interacting kinase (TNIK), a protein involved in several cancers, which yielded a plethora of candidate thiopeptides. Of the 11 synthesized compounds, 9 had high affinities for the target kinase (best KD = 1.2 nM) and 10 inhibited its enzymatic activity (best Ki = 3 nM). X-ray structural analysis of the TNIK/thiopeptide interaction revealed the unique mode of substrate-competitive inhibition exhibited by two of the discovered compounds. The thiopeptides internalized to the cytosol of HEK293H cells as efficiently as the known cell-penetrating peptide Tat (4-6 µM). Accordingly, the most potent compound, TP15, inhibited TNIK in HCT116 cells. Altogether, our platform enables the exploration of pseudo-natural thiopeptides with favorable pharmacological properties in drug discovery applications.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos/química , Vias Biossintéticas , Descoberta de Drogas
9.
ACS Chem Biol ; 17(9): 2664-2672, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36074093

RESUMO

To investigate the potential for secondary metabolite biosynthesis by Streptomyces species, we employed a coculture method to discover natural bioactive products and identified specific antibacterial activity from a combined-culture of Streptomyces hygroscopicus HOK021 and Tsukamurella pulmonis TP-B0596. Molecular networking using ultrahigh performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-QTOF-MS/MS) data revealed a specific clade of metabolites in this combined-culture that were not detected in both monocultures. Using the chemical profiles, a previously unidentified conjugate between FabF inhibitor and catechol-type siderophore was successfully identified and named harundomycin A. Harundomycin A was a conjugate between the 2,4-dihydroxy-3-aminobenzoate moiety of platensimycin and N,N'-bis(2,3-dihydroxybenzoyl)-O-seryl-cysteine (bisDHBA-Ser-Cys) with a thioester linkage. Along with the production of harundomycin A, platensimycin, its thiocarboxylic acid form thioplatensimycin, enterobactin, and its degradation product N,N'-bis(2,3-dihydroxybenzoyl)-O-l-seryl-dehydroalanine (bisDHBA-Ser-Dha) were also induced in the combined-culture. Genomic data of S. hygroscopicus HOK021 and T. pulmonis TP-B0596 indicated that strain HOK021 possessed biosynthetic gene clusters for both platensimycin and enterobactin, and thereby revealed that T. pulmonis stimulates HOK021 and acts as an inducer of both of these metabolites. Although the harundomycin A was modified by bulky bisDHBA-Ser-Cys, responsible for the binding to the target molecule FabF, it showed a similar antibacterial spectrum to platensimycin, including against methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci, suggesting that the pharmacophore is platensimycin. Additionally, Chrome Azurol S assay showed that harundomycin A possesses ferric iron-chelating activity comparable to that of enterobactin. Our study demonstrated the transformation of existing natural products to bifunctional molecules driven by bacterial interaction.


Assuntos
Produtos Biológicos , Staphylococcus aureus Resistente à Meticilina , Streptomyces , Actinobacteria , Adamantano , Aminobenzoatos , Anilidas , Antibacterianos/química , Produtos Biológicos/metabolismo , Catecóis/metabolismo , Cisteína/metabolismo , Enterobactina/metabolismo , Sideróforos/metabolismo , Streptomyces/metabolismo , Espectrometria de Massas em Tandem , meta-Aminobenzoatos/metabolismo
10.
ACS Chem Biol ; 17(10): 2936-2944, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36112882

RESUMO

Ribosomally synthesized and posttranslationally modified peptides (RiPPs) with polar-functionalized fatty acyl groups are a rarely found untapped class of natural products. Although polar-functionalized fatty-acylated RiPPs (PFARs) have potential as antimicrobial agents, the repertoire is still limited. Therefore, expanding the chemical space is expected to contribute to the development of pharmaceutical agents. In this study, we performed genome mining and stable isotope-guided comparative metabolomics to discover new PFAR natural products. We focused on the feature that PFARs incorporate l-arginine or l-lysine as the starter unit of the fatty acyl group and fed 13C6,15N4-l-arginine or 13C6,15N2-l-lysine to bacterial cultures. Metabolites were extracted and compared with those extracted from nonlabeled l-arginine or l-lysine fed cultures. We identified putative PFARs and successfully isolated solabiomycin A and B from Streptomyces lydicus NBRC 13 058 and albopeptin B from Streptomyces nigrescens HEK616, which contained a sulfoxide group in the labionin moiety. The gene disruption experiment indicated that solS, which encodes a putative flavin adenine dinucleotide (FAD)-nicotinamide adenine dinucleotide (phosphate) (NAD(P))-binding protein, is involved in the sulfoxidation of aryl sulfides. The solabiomycins showed antibacterial activity against Gram-positive bacteria, including Mycobacterium tuberculosis H37Rv with a minimum 95% inhibitory concentration (MIC95) of 3.125 µg/mL, suggesting their potential as antituberculosis agents.


Assuntos
Produtos Biológicos , Streptomyces , NAD , Flavina-Adenina Dinucleotídeo , Lisina , Streptomyces/metabolismo , Peptídeos/metabolismo , Metabolômica , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Antituberculosos , Sulfetos , Isótopos , Sulfóxidos , Arginina , Preparações Farmacêuticas , Fosfatos
11.
PLoS One ; 17(7): e0270379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35834474

RESUMO

Streptomyces lividans TK23 interacts with mycolic acid-containing bacteria (MACB), such as Tsukamurella pulmonis TP-B0596, and this direct cell contact activates its secondary metabolism (e.g., the production of undecylprodigiosin: RED). Here, we employed carbon (12C5+) ion beam-induced mutagenesis to investigate the signature of induced point mutations and further identify the gene(s) responsible for the production of secondary metabolites induced by T. pulmonis. We irradiated spores of the Streptomyces coelicolor strain JCM4020 with carbon ions to generate a mutant library. We screened the RED production-deficient mutants of S. coelicolor by mixing them with T. pulmonis TP-B0596 on agar plates, identifying the red/white phenotype of the growing colonies. Through this process, we selected 59 RED-deficient mutants from around 152,000 tested spores. We resequenced the genomes of 16 mutants and identified 44 point mutations, which revealed the signatures induced by 12C5+-irradiation. Via gene complementation experiments, we also revealed that two genes-glutamate synthase (gltB) and elongation factor G (fusA)-are responsible for the reduced production of RED.


Assuntos
Streptomyces coelicolor , Antibacterianos/metabolismo , Carbono/metabolismo , Íons/metabolismo , Mutagênese , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Streptomyces lividans/metabolismo
12.
ACS Cent Sci ; 8(6): 814-824, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35756369

RESUMO

Promiscuous post-translational modification (PTM) enzymes often display nonobvious substrate preferences by acting on diverse yet well-defined sets of peptides and/or proteins. Understanding of substrate fitness landscapes for PTM enzymes is important in many areas of contemporary science, including natural product biosynthesis, molecular biology, and biotechnology. Here, we report an integrated platform for accurate profiling of substrate preferences for PTM enzymes. The platform features (i) a combination of mRNA display with next-generation sequencing as an ultrahigh throughput technique for data acquisition and (ii) deep learning for data analysis. The high accuracy (>0.99 in each of two studies) of the resulting deep learning models enables comprehensive analysis of enzymatic substrate preferences. The models can quantify fitness across sequence space, map modification sites, and identify important amino acids in the substrate. To benchmark the platform, we performed profiling of a Ser dehydratase (LazBF) and a Cys/Ser cyclodehydratase (LazDEF), two enzymes from the lactazole biosynthesis pathway. In both studies, our results point to complex enzymatic preferences, which, particularly for LazBF, cannot be reduced to a set of simple rules. The ability of the constructed models to dissect such complexity suggests that the developed platform can facilitate a wider study of PTM enzymes.

13.
Sci Rep ; 12(1): 7222, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35508597

RESUMO

Co-culture is an efficient strategy for natural product discovery. We have used mycolic acid-containing bacteria (MACB) Tsukamurella pumonis TP-B0596 to induce secondary metabolism by actinomycetes and have found several natural products. We also observed that MACB attached to the mycelium of Streptomyces lividans forming coaggregates during combined-culture. This stimulated interest in the interactions among actinomycetes and MACB, and we found that soil isolated cultures contained a mixture of actinomycetes and MACB. Our previously observed interactions were the result of selective screening and combination of bacteria in the lab, which warranted investigation of the existence of these interactions in the natural soil environment. Therefore, in this paper, we report the interaction between a co-isolated natural pair of actinomycetes and MACB in terms of morphology and metabolic changes. A natural pair of actinomycetes and MACB co-aggregated in liquid culture and showed metabolic changes. Interestingly, co-aggregated actinomycetes and MACB were re-isolated from soil with no obvious morphological colony differences from the colony of a single strain. The results demonstrate that there is a stochastic chance of picking colonies containing co-aggregated actinomycetes and MACB, which suggests that the pair can exist in co-aggregate form in the soil environment and interact with each other.


Assuntos
Actinobacteria , Produtos Biológicos , Actinobacteria/metabolismo , Actinomyces/metabolismo , Bactérias/metabolismo , Produtos Biológicos/metabolismo , Ácidos Micólicos/metabolismo , Solo
14.
ACS Chem Biol ; 17(1): 207-216, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35000376

RESUMO

Ferrichromes are a family of fungal siderophores with cyclic hexapeptide structures. Most fungi produce one or two ferrichrome-type siderophores. Acremonium persicinum MF-347833 produces ferrichrome-like potent Trojan horse antifungal antibiotics ASP2397 and AS2488053, the aluminum- and iron-chelating forms of AS2488059, respectively. Here, we show by gene sequencing followed by gene deletion experiments that A. persicinum MF-347833 possesses two nonribosomal peptide synthetase genes responsible for AS2488059 and ferricrocin assembly. AS2488059 was produced under iron starvation conditions and excreted into the media to serve as a defense metabolite and probably an iron courier. In contrast, ferricrocin was produced under iron-replete conditions and retained inside the cells, likely serving as an iron-sequestering molecule. Notably, the phylogenetic analyses suggest the different evolutionary origin of AS2488059 from that of conventional ferrichrome-type siderophores. Harnessing two ferrichrome-type siderophores with distinct biological properties may give A. persicinum a competitive advantage for surviving the natural environment.


Assuntos
Acremonium/química , Complexos de Coordenação/metabolismo , Ferricromo/análogos & derivados , Ferricromo/metabolismo , Peptídeos Cíclicos/metabolismo , Sideróforos/metabolismo , Complexos de Coordenação/química , Mineração de Dados , Ferricromo/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Peptídeos Cíclicos/química , Filogenia , Sideróforos/química
15.
J Antibiot (Tokyo) ; 75(2): 72-76, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949834

RESUMO

During our screening for antibiotics against Mycobacterium avium complex (MAC) with a mass spectrometry network-based indexing approach, a new compound named kimidinomycin was isolated from the culture broth of Streptomyces sp. KKTA-0263 by solvent extraction, HP20 column chromatography, and preparative HPLC. From the structural elucidation, the compound possesses a 38-membered macrolide structure with an N-methylguanidyl group at the terminal side chain. The compound exhibited antimycobacterial activity against M. avium, M. intracellulare, M. smegmatis, and M. bovis BCG with respective MIC values of 12.5, 0.78, 12.5, and 25.0 µg ml-1.


Assuntos
Antibióticos Antituberculose , Complexo Mycobacterium avium , Streptomyces , Animais , Cricetinae , Humanos , Antibióticos Antituberculose/biossíntese , Antibióticos Antituberculose/farmacologia , Antibióticos Antituberculose/toxicidade , Células CHO , Cromatografia Líquida de Alta Pressão , Cricetulus , Fermentação , Células HeLa , Macrolídeos/química , Testes de Sensibilidade Microbiana , Complexo Mycobacterium avium/efeitos dos fármacos , Infecção por Mycobacterium avium-intracellulare , Mycobacterium bovis/efeitos dos fármacos , Mycobacterium smegmatis/efeitos dos fármacos , Streptomyces/metabolismo
16.
Magn Reson Chem ; 60(2): 261-270, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34547830

RESUMO

The complete 1 H and 13 C NMR characterization of streptogramin B (1), the major component of a clinically important synergistic antibiotic complex, was presented for the first time, along with those of L-156,587 (2), a dehydrated congener of streptogramin A (3). Compounds 1 and 2 were not synergistic and produced by Streptomyces albogriseolus in co-culture with Tsukamurella pulmonis, which poses a question on the adaptive significance of the induced production of this antibiotic pair.


Assuntos
Antibacterianos , Estreptogramina B , Actinobacteria , Antibacterianos/farmacologia , Estreptograminas , Streptomyces , Virginiamicina/análogos & derivados
17.
Sci Rep ; 11(1): 20116, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635733

RESUMO

Extracellular contractile injection systems (eCISs) are structurally similar to headless phages and are versatile nanomachines conserved among diverse classes of bacteria. Herein, Streptomyces species, which comprise filamentous Gram-positive bacteria and are ubiquitous in soil, were shown to produce Streptomyces phage tail-like particles (SLPs) from eCIS-related genes that are widely conserved among Streptomyces species. In some Streptomyces species, these eCIS-related genes are regulated by a key regulatory gene, which is essential for Streptomyces life cycle and is involved in morphological differentiation and antibiotic production. Deletion mutants of S. lividans of the eCIS-related genes appeared phenotypically normal in terms of morphological differentiation and antibiotic production, suggesting that SLPs are involved in other aspects of Streptomyces life cycle. Using co-culture method, we found that colonies of SLP-deficient mutants of S. lividans were more severely invaded by fungi, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. In addition, microscopic and transcriptional analyses demonstrated that SLP expression was elevated upon co-culture with the fungi. In contrast, co-culture with Bacillus subtilis markedly decreased SLP expression and increased antibiotic production. Our findings demonstrate that in Streptomyces, eCIS-related genes affect microbial competition, and the patterns of SLP expression can differ depending on the competitor species.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Espaço Extracelular/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Microbianas , Prófagos/metabolismo , Streptomyces/metabolismo , Bacillus subtilis/crescimento & desenvolvimento , Genes Reguladores , Nanoestruturas , Prófagos/crescimento & desenvolvimento , Streptomyces/crescimento & desenvolvimento
18.
J Antibiot (Tokyo) ; 74(5): 307-316, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33483628

RESUMO

Longicatenamides A-D, two diastereomeric pairs of new cyclic hexapeptides, were isolated from the combined-culture of Streptomyces sp. KUSC_F05 and Tsukamurella pulmonis TP-B0596. Their planar structures were determined by spectroscopic analysis including extensive 2D NMR and MS analysis. The absolute configurations of their component amino acids were determined by the use of highly sensitive reagents we recently developed; the highly sensitive-advanced Marfey's method (HS-advanced Marfey's method), which led us to reduce the sample loss and prevent incorrect structural determination. Particularly, the Cß-stereochemistry of hyGlu in longicatenamides A and C was assigned without any use of Cß-Marfey's methods. Longicatenamide A exhibited weak but preferential antimicrobial activity against Bacillus subtilis.


Assuntos
Actinobacteria/metabolismo , Peptídeos/metabolismo , Streptomyces/metabolismo , Actinobacteria/química , Linhagem Celular , Sobrevivência Celular , Colorimetria , Humanos , Espectrometria de Massas , Peptídeos/química , Conformação Proteica , Streptomyces/química
19.
J Org Chem ; 86(2): 1843-1849, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33410699

RESUMO

Two nonapeptide natural products, amycolapeptins A (1) and B (2) with a 22-membered cyclic depsipeptide skeleton, ß-hydroxytyrosine, and a highly modified side chain, which were not produced in a monoculture of the rare actinomycete Amycolatopsis sp. 26-4, were discovered in broth of its combined-culture with Tsukamurella pulmonis TP-B0596. The planar structures were elucidated by spectroscopic analyses (extensive 2D-NMR and MALDI-TOF MS/MS). The absolute configurations of component amino acids were unambiguously determined by the highly sensitive advanced Marfey's method we recently developed. Additionally, the structures of unstable/unusual moieties were corroborated by chemical synthesis and CD analysis.


Assuntos
Actinobacteria , Streptomyces , Amycolatopsis , Estrutura Molecular , Peptídeos Cíclicos , Espectrometria de Massas em Tandem
20.
J Am Chem Soc ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211968

RESUMO

We report a method for the high-throughput reactivity profiling of genetically encoded libraries as a tool to study substrate fitness landscapes for RiPP (ribosomally synthesized and post-translationally modified peptide) biosynthetic enzymes. This method allowed us to rapidly analyze the substrate preferences of the lactazole biosynthetic pathway using a saturation mutagenesis mRNA display library of lactazole precursor peptides. We demonstrate that the assay produces accurate and reproducible in vitro data, enabling the quantification of reaction yields with temporal resolution. Our results recapitulate the previously established knowledge on lactazole biosynthesis and expand it by identifying the extent of substrate promiscuity exhibited by the enzymes. This work lays a foundation for the construction and screening of mRNA display-based combinatorial thiopeptide libraries for the discovery of lactazole-inspired thiopeptides with de novo designed biological activities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...